Technical Report 2 Building and Plant Energy Analysis

EMD Serono Research Center - existing | Billerica, MA

Prepared By: Shiyun Chen | mechanical | 10.26.2010

Prepared For:

Dr. William P. Bahnfleth, PhD, P.E. Department of Architectural Engineering The Pennsylvania State University

Table of Contents

1 Executive Summary	2
2 Building Summary	3
3 Mechanical System Description	3
4 Design Load Estimation	4
4.1 Block Load Assumption	4
4.2 Load Source and Modeling Information	6
4.3 System Load Analysis Results	8
4.4 Conclusion	10
5 Annual Energy Consumption and Operating Costs	11
5.1 Annual Energy Consumption and Cost	11
5.2 System Energy Breakdown	15
5.3 System Cost Breakdown	17
5.4 Conclusion	18
6 System Pollution Emission	19
6.1 System Pollution Emission	19
6.2 Conclusion	20
References	21
Appendix A: List for Tables and Figures	22
Appendix B: Supplemental Tables	24

1

1 Executive Summary

The purpose of this report is to perform a block load energy analysis to predict the energy consumption, energy cost and carbon footprint for EMD Serono Research Center – existing lab building. An energy model simulation was performed in Trane Trace 700. Block load analysis was chosen due to its simplicity and level of accuracy.

In order for the model to have comparable result when compared to the actual design, modeling data was taken from the actual design documents, such as design criteria, equipment load, and lighting loads. This building was divided into 5 types of spaces: lunch area, office area, mechanical room area, vivarium area, and research & development area. There are total of 9 blocks for this building. Blocks were assigned to 3 air handling units (AHU) according to the actual design.

The resulting loads generated by the model were then compared to the actual design load. Some of the discrepancies in this energy analysis were higher heating load, higher cooling load, and higher ventilation rate. Variation from the design values was mainly due to the assumptions for block load modeling.

The total annual energy consumption for the EMD Serono Research Center-existing lab building is 4,721,208 kWh, with 3,610,276 kWh coming from electricity, 1,110,932 kWh (37907 therms) coming from natural gas. The annual water consumption for mechanical equipment of this building is 1,875,000 gallon. This building has a large equipment and lighting load, due to the fact that pharmaceutical research and development building has high electric demand of lab instruments and light.

The total energy consumption calculated for EMD Serono Research Center – existing lab building is \$112,097/year, with \$75,697/year coming from electricity, \$34,525/year coming from gas, and \$1875/year coming from water. Based on the energy consumption of the building, it will require \$1.99/sf to operate annually.

Overall, the modeled energy simulation was within a reasonable range to the design. The biggest difference between the actual design and the model is the modeling method used. Room by room calculation method was used for the designed calculation versus block load method for the modeled calculation.

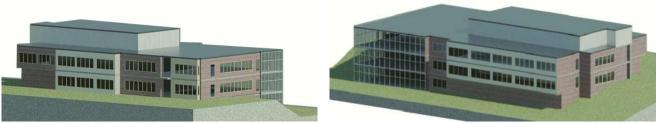
2 Building Summary

EMD Serono Research Center – existing lab building was constructed as the research and development building. This building has 2 stories, a basement, and a penthouse, with gross area of 56,700 square foot. The building program contains management office, research and development laboratories, and vivarium rooms. Mechanical rooms are located on the basement floor and in the penthouse. Vivarium facilities, research lab rooms, support rooms are located on both the 1st and 2nd floor.

3 Mechanical System Description

The building receives conditioned supply air from 3 air handling units (AHU). AHU-1 is located in the penthouse and supplies a total of 45,000 cfm conditioned outside air to research and development laboratory spaces in the building. The occupied spaces of the basement and administration offices on 1st and 2nd floor are conditioned by AHU-2 in the penthouse with 19,000 cfm total. The mechanical room in the basement and the vivarium rooms on the 1st floor are conditioned by AHU-3 which is located in the basement and supplies a total of 5,000 cfm.

One 350 ton centrifugal chiller is located in the basement. Two steam boilers and a boiler feed water pump are located in the penthouse. A 4200MBtuh cooling tower and a 60 ton air cooled chiller are located on the roof adjacent to the penthouse.



EMD SERONO RESEARCH CENTER – EXISITING | BILLERICA | MA

4 Design Load Estimation

Trane TRACE 700 Version 6.2 was used to determine the design load and energy consumption of the EMD Serono Research Center- existing lab building.

A simplified Revit model of this building was built based on the architectural drawing. Other design information such as building envelope, equipment load, outside air ventilation rate, and design criteria were input to the Trace model based on actual data taken from the design document

East and South Sides

South and Ease Sides

Figure-1 Revit Model of EMD Serono – Existing Lab Building

4.1 Block Load Assumption

A block load analysis was performed for this building. The advantages of using a block load analysis as opposed to a space by space analysis are calculation time reduction, manageable model file size, and reasonable accurate results.

The EMD Serono Research Center- existing lab building is comprised of a variety of areas such as office area, conference rooms, lobby, corridor, research and development lab, vivarium lab, and tissue culture rooms. In order to properly model the block load of this building, block were assigned to best represent the building function. There are 5 types of block with a total of 9 blocks. Lunch area, office area, mechanical room area, vivarium room area, and research & development area were selected as block types. In order to compare load results to the design air handling units' load, blocks were assigned to 3 air handling units (AHU) according to the actual design.

Some of the assumptions that were made during the creation of this block model are listed below.

1) Each block was calculated as one type of space. However, there are a variety of rooms in each block. For example, office block comprised of office rooms, conference room, lobby, corridors, and restroom.

 Boston MA weather information was used as opposed to Billerica MA weather information.

Table-1 shows the list of blocks with the corresponding Air Handling Units. Figure-2 shows the block division in the building model.

AHU-1	AHU-2	AHU-3
3-1-AHU1-Mechanical	2-3-AHU2-Office	1-2-AHU3-Vivarium
2-1-AHU1-R&D	1-3-AHU2-Office	0-2-AHU3-Mechanical
2-2-AHU1-R&D	0-1-AHU2-Lunch Room	
1-1-AHU1-R&D		

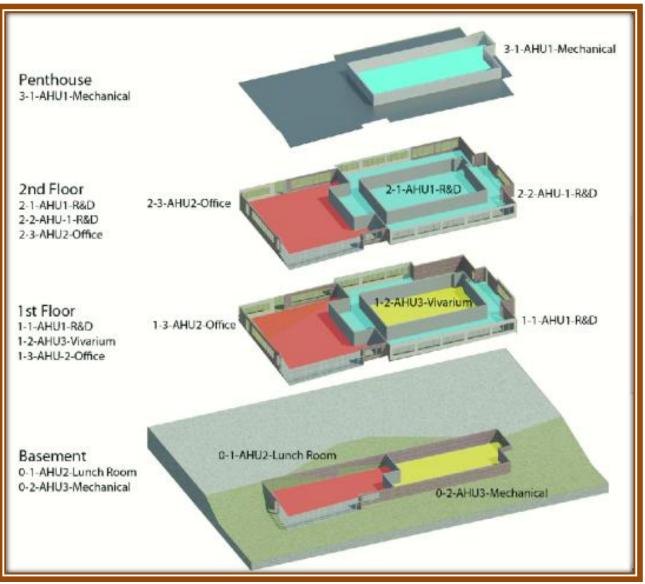


Table-1 AHUs for Blocks

Figure-2 Building Block Division

4.2 Load Source and Modeling Information

4.2.1 Weather Data

Outdoor air conditions for heating and cooling for Boston, MA were used for this analysis. Weather conditions were taken from the ASHRAE Handbook of Fundamentals 2009, and they represented the 0.4% summer cooling design and 99.6% winter heating design.

Weather Data					
Dry Bulb (F) Wet Bulb (F)					
Summer Design Cooling	90.8	73.1			
Winter Design Heating 7.7 N/A					
Table-2 Weather Data					

4.2.2 Design Condition

Five types of blocks were selected because each block type has its unique design criteria from the design documents.

Design Criteria								
	Cooling DB Cooling Heating DB Heating Relative							
	(F)	Driftpoint (F)	(F)	Driftpoint (F)	Humidity (%)			
Office	75	77	72	70	50			
Lunch	75	77	72	70	50			
Mechanical	10° above	N/A	65	N/A	50			
	ambient		minimum					
R&D	72	74	72	70	47			
Vivarium	72	74	72	70	47			

 Table-3 Design Criteria

4.2.3 Building Envelope

Building envelope data were taken from the actual design documents and input into the Trace energy model to get comparable results.

Construction					
Location	Туре	U-factor (Btu/h-ft ² -F)			
Slab	6" HW Concrete	0.53			
Roof	Steel Sheet, 3.33" Ins	0.08			
Wall Face Brick, 4" LW Conc. Blk, 6' Ins 0.04					
Table-4 Construction					

TECH REPORT 2

Glass Type						
Location Type U-factor (Btu/h-ft ² -F) Shading Coefficient						
Window	Double Clear 1/4"	0.6	0.82			
SkylightDouble Clear ¼"0.60.82						
	Tak					

 Table-5 Glass Type

Height					
Wall (ft.) 11.3					
Floor to Floor (ft.)	14				
Plenum (ft.) 2.7					
T -11-	C L Laiselat				

Table-6 Height

4.2.4 Equipment Load and Lighting Load

The following equipment loads and lighting loads are taken from the design documents.

Load (Design Document)							
	Equipment Load (W/sf) Lighting Load (W/sf)						
Laboratories	10	2					
Administration/Office	3.5	2					
Lab Equipment Room	15	2					
Animal Holding Room	N/A (15 AH/hr.)	N/A					
Cage Washing	N/A (15 AH/hr.)	N/A					
Corridor	2	1.5					
Procedure Room	8	1.5					

Table-7 Design Equipment and Lighting Loads

Adjustments were made for the block's equipment and lighting loads to reflect the variety of rooms in each block.

Load (Block)				
	Equipment Load (W/sf)	Lighting Load (W/sf)		
Office	3.5	2		
Lunch	3.5	2		
Mechanical	3.5	2		
R&D	10	2		
Vivarium	N/A (15 AH/hr.)	N/A		

Table-8 Adjusted Equipment and Lighting Loads for Block Load Model

7

4.2.5 Outside Air Ventilation Rate

The table listed below shows the ventilation rate used in this energy analysis that was taken from the design document.

Outside Air Ventilation Rate				
Outside Air Ventilation Rate (%)				
Office 20 cfm/occupant minimum				
Lunch 20 cfm/occupant minimum				
Mechanical 100				
R&D 100				
Vivarium	100			

Table-9 Outside Air Ventilation Rate

4.2.6 Design Occupancy

Design occupancy was not explicitly available for EMD Serono Research Center – existing lab building. Therefore, ASHRAE recommended occupancies were used in this analysis.

4.3 System Load Analysis Results

Design and modeled heating load, cooling load, and ventilation rates were compared in Table-10, Table-11, Table-12, and Table-13. Results were within a reasonable range when compared to design values. . One of the reasons that modeled values were different from design values is the use of simplified block load calculation method.

The modeled block heating load resulted in values that were greater than the actual design values. AHU-3 had the largest variation among the 3 air handling units. AHU-3 solely serves the vivarium block on the first floor during winter heating mode and serves both the mechanical block in the basement and the vivarium block during the summer cooling mode. The vivarium block comprised of animal holding room, cold room, instrument room, preparation rooms and corridor. Animal holding rooms have the highest heating demand among the other rooms. Calculation were done based on the animal holding room design criteria, which led to an over-estimated value of heating load on the vivarium block for AHU-3.

Heating Load						
	System Load System Load/Area				a	
	Design Model Difference			Design	Model	Difference
	Mbh	Mbh	%	Mbh/sf	Mbh/sf	%
AHU-1	2126	2295	8%	0.08	0.09	8%
AHU-2	920	1004	9%	0.05	0.05	9%
AHU-3	320	526	64%	0.03	0.06	64%
Overall	3366	3825	14%	0.06	0.07	14%

Table-10 Heating Load Comparison

When comparing the design and modeled cooling loads, there was an average of 29% deviation. The main differences for this deviation are the outside air conditions and the cooling coil selections. The actual design cooling load was not given from the design document. Calculations were done to find the sensible and latent loads of the air handling units from the given entering and leaving air temperature of the cooling coil. As shown in Table-14, there were different entering and leaving air temperatures for design and modeled cooling coils in air handling units. 99.6% summer outdoor air conditions was taken from the ASHRAE Handbook of Fundamentals 2009 for the modeled load. The design calculation used different outdoor air conditions, therefore different entering air temperature for the cooling coil. The modeled air handling units have higher humidity ratio difference than the design air handling units which caused higher latent loads.

Cooling Load						
	System Load Area/System Load				ad	
	Design Model Difference				Model	Difference
	Mbh	Mbh	%	SF/Ton	SF/Ton	%
AHU-1	3245	4125	27%	0.1	0.08	-21%
AHU-2	1039	1345	29%	0.23	0.18	-23%
AHU-3	307	465	51%	0.37	0.24	-34%
Overall	4592	5935	29%	0.15	0.11	-23%

Table-11 Cooling Load Comparison

Both AHU-1 and AHU-3 provides 100% outside air to their conditioned spaces. AHU-3 utilizes return air to the system. Two ventilation rate comparisons were done: outside air ventilation rate and total supply air rate comparisons. There was a slight variation on modeled outside air ventilation rates and the actual design rates. However, there was a large difference between the modeled total supply air rate and the designed rate for AHU-2. One of the reasons that these value differ significantly was due to the different temperature differences across the cooling coil on the airside stream. As shown in Table-14, modeled air temperature differences were around 10-20F lower than the temperature differences from the actual design data. Therefore, larger amount of air

flow rate (cfm) were needed to meet to load requirement for lower temperature difference.

	Total Ventilation (Cooling)							
	Туре	Design	Design	Model	Model	Difference	Difference	
		OA	TA	OA	TA	OA	TA	
		cfm	cfm	cfm	cfm	%	%	
AHU-1	100%OA	45000	45000	39198	39198	-13%	-13%	
AHU-2	With RA	6300	19000	7194	45976	14%	141%	
AHU-3	100%OA	5000	5000	7829	7829	57%	57%	
Overall		56300	69000	54221	92790	-4%	34%	

Table-12 Ventilation Rate Comparison

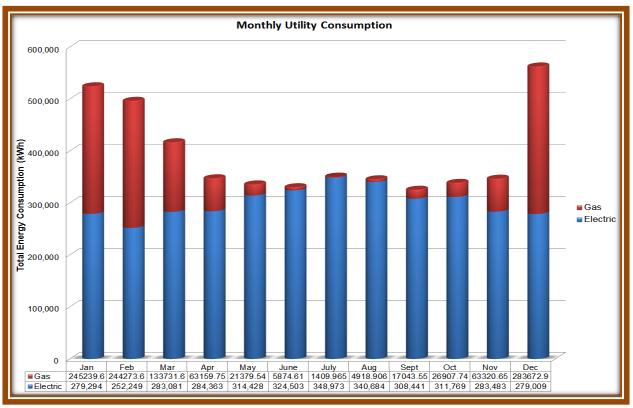
	Ventilation per Area (Cooling)							
	Туре	Design OA	Design TA	Model OA	Model TA	Difference OA	Difference TA	
		cfm/sf	cfm/sf	cfm/sf	cfm/sf	%	%	
AHU-1	100%OA	1.68	1.68	1.46	1.46	-13%	-13%	
AHU-2	With RA	0.31	0.95	0.36	2.28	14%	141%	
AHU-3	100%OA	0.53	0.53	0.83	0.83	57%	57%	
Overall		1	1.23	0.96	1.65	-4%	34%	

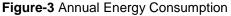
Table-13 Ventilation Rate per Area Comparison

	Cooling Coil Air Side Temperature											
	Design						Мс	odel				
	EDB	EWB	LDB	LWB	ΔW	ΔT	EDB	EWB	LDB	LWB	ΔW	ΔT
AHU-1	95	75	53	53	0.0062	39	88	78	45	45	0.0120	19
AHU-2	86	68	53	53	0.0026	29	77	66	58	58	0.0020	21
AHU-3	95	75	53	53	0.0062	39	88	78	69	63	0.0074	19

Table-14 Cooling Coil Air Side Temperature Comparison

4.4 Conclusion


Block load energy analysis was performed for the EMD Serono Research Center – existing lab building using Trane Trace 700 energy simulation software. The building was divided into 5 types of spaces with a total of 9 blocks. Load sources and modeling information such as design criteria, equipment load, and lighting loads were taken from the actual design documents. Comparisons were done for actual design load and the modeled load. These results showed that the modeled heating load, cooling load, and ventilation rates were within a reasonable range while compared to the actual design.


5 Annual Energy Consumption and Operating Costs

The annual energy simulation analysis was performed for EMD Serono Research Center –existing lab building using the same Trace700 model. Cooling equipments use electricity to operate. water consumption is mainly come from the cooling tower operation. The gas fired central heating plant operates year-round. Low pressure steam boilers provide winter heating, humidification, and summer reheat for temperature control.

5.1 Annual Energy Consumption and Cost

Figure-3 shows the monthly gas and electric consumptions for the EMD Serono Research Center – exisiting lab building. There is large gas consumption during the winter time for space heating and minimal gas consumption during the summer time for cold supply air reheat. Maximum electric consumption occurs in July due to maximum cooling equipment operation. Electric consumption is fairly consistant throught out the year due to the large lab equipment load year-round. Water is used year round to operate cooling tower in the summer and humidify air in the winter. Figure-4 shows the montly water consumption for this builiding. Figure-5 shows the montly water, gas, and electric cost for the builiding. Figure-6 shows annual cost per square foot to operate the building. The average annual utility cost per area is 1.99\$/sf.

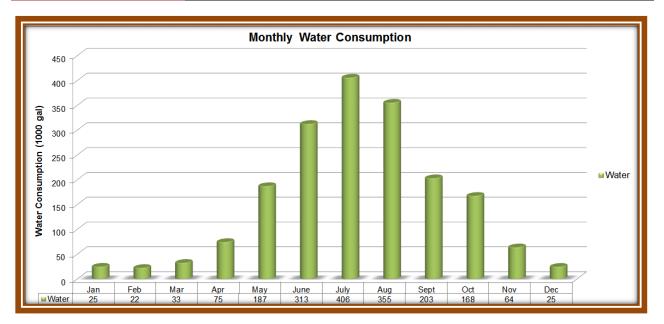


Figure-4 Annual Water Consumption

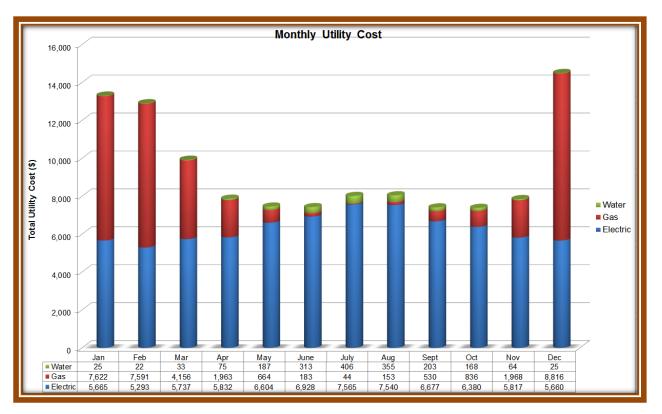


Figure-5 Annual Utility Cost

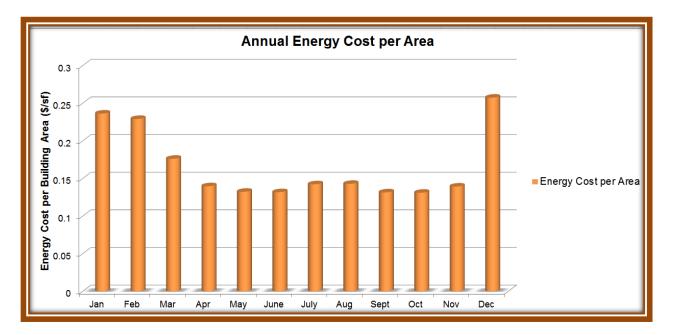


Figure-6 Annual Utility Cost per Area

5.1.1 Energy Analysis by Design Engineer

Energy analysis for this builidng was not performed by the design engineer. The analysis was not performed because it was not a LEED certified building and it was not required by code.

5.1.2 Fuel Costs

The primary electrical service to the building is provided by the Massachusetts Electric Company. Since the building has a electrical demand of 1158kW, greater than 200kW, it is qualify for the Time-of-Use(G-3) electric rate.

\$0.9108/therm was used as the natural gas rate. This gas rate was taken from the National Grid for Boston area with G-42-Low Load Factor General Service Rate-Medium building type.

Electricity Rate				
Customer Charge	\$200.00/month			
Distribution Demand Charge	\$3.92/kW			
Distribution Charge				
Peak Hours	1.374¢/kWh			
Off-Peak Hours	0.621¢/kWh			
Transmission Charge	1.328¢/kWh			
Transition Energy Charge	0.030¢/kWh			
Energy Efficiency Charge	0.433¢/kWh			
Renewables Charge	0.050¢/kWh			

Table-15 Electric Rate for Time-of-Use (G-3) Building

5.1.3 Schedule

Schedules were based on a typical office space provided by the Trace software.

Equipment Operation Schedule				
Start Time	End Time	Status		
Midnight	5 a.m.	Storage		
5 a.m.	6 a.m.	Off		
6 a.m.	6 p.m.	Normal		
6 p.m.	Midnight	Storage		

Light Operation Schedule					
Start Time	End Time	Percentage			
Midnight	6 a.m.	0			
6 a.m.	7 a.m.	10			
7 a.m.	8 a.m.	50			
8 a.m.	5 p.m.	100			
5 p.m.	6 p.m.	50			
6 p.m.	7 p.m.	10			
7 p.m.	Midnight	0			

Occupancy Schedule					
Start Time	End Time	Percentage			
Midnight	6 a.m.	0			
6 a.m.	7 a.m.	10			
7 a.m.	8 a.m.	30			
8 a.m.	5 p.m.	100			
5 p.m.	6 p.m.	30			
6 p.m.	7 p.m.	10			
7 p.m.	Midnight	0			

Table-16 Equipment Operation, Lighting, and Occupancy Schedule

5.1.4 Equipment Performance Characteristics

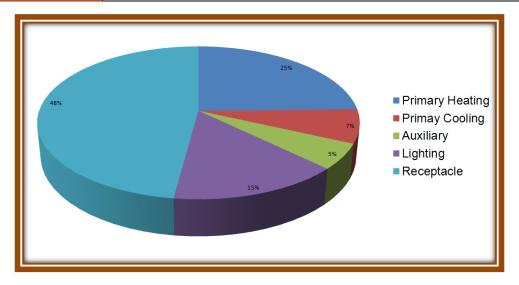
The following tables shows the equipment performance characteristics that were used in the energy model. All the informations were taken from the actual desing schedules.

Equipment Characteristics					
	Air Flow (cfm)		Wate	r Flow (GPM)	
AHU-1	45,000			675	
AHU-2	19,000			155	
AHU-3	5,000			70	
	Capacity (Ton)	(GPM	BHP	
Cooling Tower	5,000		70	50	
	Capacity (Ton)		Energy F	Rate (kW/Ton)	
Centrifugal Chiller	350		0.56		
Air Cooled Chiller	60		1.24		

TECH REPORT 2 SHIYUN CH

	Capacity (Mbh)		Efficiency (%)		
Boiler 1	6400		81%		
Boiler 2	1600		81%		
	Capacity (GAL)	GPM	RMP		
Boiler Feeder	200	28/10	1750		
		ODM	Number of Dumme		
	Capacity (GAL)	GPM	Number of Pumps		
Condensate Pump 1	45	4	2		
Condensate Pump 2	22 1/2	8	2		
	GPM		MHP		
Water Pump 1	840		20		
Water Pump 2 (2)	Vater Pump 2 (2) 135		3		
Water Pump 3 (2)	1050	1050 15			
Water Pump 4 (2)	225		5		

Table-17 Equipment Characteristics


5.2 System Energy Breakdown

The EMD Serono Research Center – existing lab building has a significant receptable and lighting load. Since this building is a pharmarchutical research facility, large equipment load and lighting loads are demanded. The equipment load for this building has a range of 3.5 to 10 W/sf while the average lighting laod is 2 W/sf. Figure-6shows the enegry breakdown of the building. Figure-7 shows HVAC energy consumption breakdown.

	Energy Breakdown	
	Total Building Energy (kBtu/yr)	Percentage (%)
Primary Heating	3,980,583	25%
Primacy	1,135,188	7%
Cooling		
Auxiliary	876,000	5%
Lighting	2,395,708	15%
Receptacle	7,725,055	48%
Total	16,112,534	100%

Table-18 Energy Consumption Breakdown

TECH REPORT 2 SHIYUN CHEN | ADVISOR: DR. BAHNFLETH

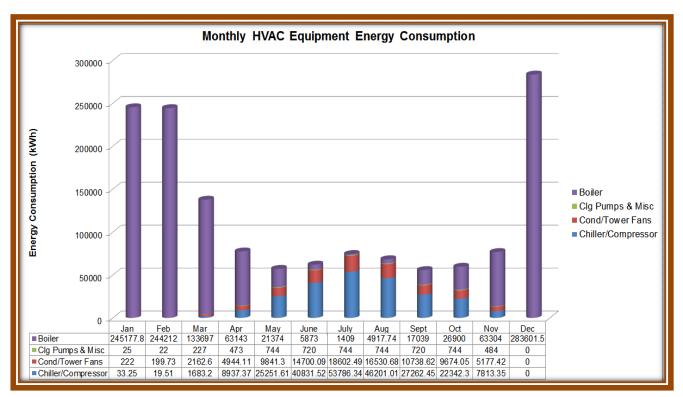
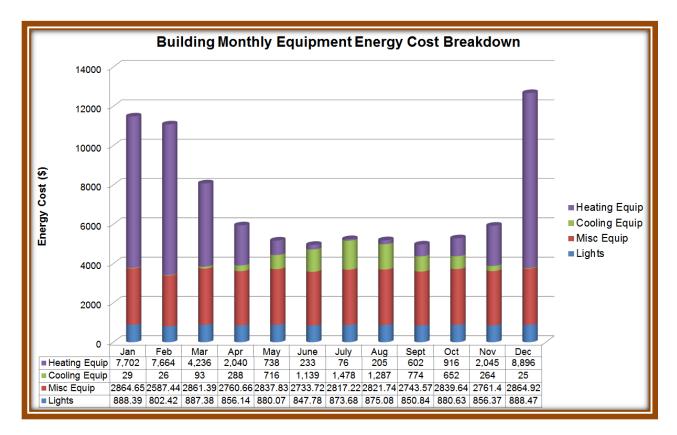



Figure-8 HVAC Energy Consumption

5.3 System Cost Breakdown

Figure-7 shows the cost associated with energy usage. The highest percentage of cost came from the heating equipment and followed by miscellaneous equipment. The reason for the high cost of heating equipment is the high cost of gas compared to electricity.

Figure-9 HVAC Energy Consumption

Energy Cost Breakdown					
	Annual Energy Cost (\$/yr)	Percentage (%)			
Lighting	10387	12%			
Misc. Equipment	33494	39%			
Cooling Equipment	6770	8%			
Heating Equipment	35353	41%			

Table-19 Energy Cost Breakdown

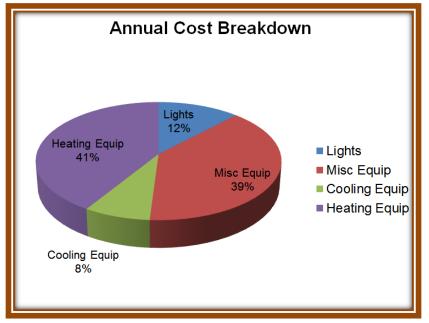


Figure-10 Annual Energy Cost Breakdown

5.4 Conclusion

Analyses for annual energy consumption and annual utility cost were done. Electricity rates and gas rates that were used in this analysis were taken from the National Grid for Massachusetts. System energy consumption and energy cost breakdown analyses were also performed in this report. Results showed that the EMD Serono Research Center – existing lab building has large plug load and lighting load. This was due to that fact that pharmaceutical research and development building has high electric demand for lab instruments and light. Heating equipment has the highest percentage on energy cost due to the high cost of natural gas.

6 System Pollution Emission

6.1 System Pollution Emission

Values for the emission factors were taken form the "Regional Grid Emission Factors 2007" for the Eastern region. The total pollution emissions that are generated from EMD Serono Research Center-existing lab building were due to the use of electricity and natural gas. The total pollution emissions are generated by delivered electricity, delivered natural gas, and on-site combustion in gas-fired boilers. 3,610,276 kWH of electricity and 37907 therm were used for this analysis.

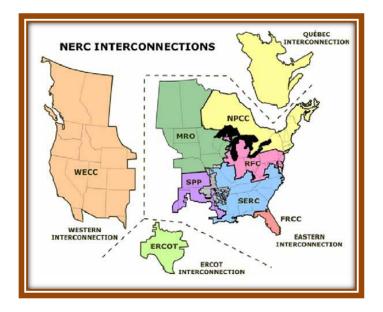


Figure-9 North American Electric Grid Connections, Including the 10 NERC Regional Reliability Councils (NERC 2007)

Emission f	Emission for Delivered Electricity					
Pollutant	lb./kWh	lb.				
CO _{2e}	1.74	6.28E+06				
CO ₂	1.64	5.92E+06				
CH ₄	3.59	1.30E+07				
N ₂ O	3.87	1.40E+07				
NO _x	3	1.08E+07				
SO _x	8.57	3.09E+07				
CO	8.54	3.08E+07				
TNMOC	7.26	2.62E+07				
Lead	1.39	5.02E+06				
Mercury	3.36	1.21E+07				
PM10	9.26	3.34E+07				
Solid Waste	2.05	7.40E+06				

Table-20 Emission for Delivered Electricity

		mission for Natural	Emission for On-Site Combustion in a			
	Gas Delive	ered to Bldg	Commercial Boiler			
Pollutant	Lbm/1000cf Lbm		Lbm/1000cf	Lbm		
CO _{2e}	2.08E+01	7.62E+04	1.9700E+00	7.2212E+03		
CO ₂	1.16E+01	4.25E+04	1.9600E+00	7.1846E+03		
CH ₄	7.04E-01	2.58E+03	4.0000E-05	1.4662E-01		
N ₂ O	2.35E-04	8.61E-01	4.0000E-05	1.4662E-01		
NO _x	1.64E-02	6.01E+01	1.7800E-03	6.5248E+00		
SOx	1.22E+00	4.47E+03	1.0100E-05	3.7023E-02		
CO	1.36E-02	4.99E+01	1.5000E-03	5.4984E+00		
TNMOC	4.56E-05	1.67E-01	9.8200E-05	3.5996E-01		
Lead	2.41E-07	8.83E-04	8.0100E-09	2.9362E-05		
Mercury	5.51E-08	2.02E-04	4.1600E-09	1.5249E-05		
PM10	8.17E-04	2.99E+00	1.3500E-04	4.9486E-01		
PM-unspecified	1.42E-03	5.21E+00				
Solid Waste	1.60E+00	5.86E+03				

 Table-21 Precombustion Emission for Natural Gas Delivered to Building and Emission for On-Site

 Combustion in a Commercial Boiler

Total Emission for Building					
Pollutant	Lbm				
CO _{2e}	6.37E+06				
CO ₂	5.97E+06				
CH ₄	1.30E+07				
N ₂ O	1.40E+07				
NO _x	1.08E+07				
SO _x	3.09E+07				
CO	3.08E+07				
TNMOC	2.62E+07				
Lead	5.02E+06				
Mercury	1.21E+07				
PM10	3.34E+07				
PM-unspecified	5.21E+00				
Solid Waste	7.41E+06				

Table-22 Total Emission for Building

6.2 Conclusion

System pollution emission analysis was performed for the EMD Serono Research Center – existing lab building. This building has an annual emission of 5.97E6 lbm CO₂/year, 1.08E7 lbm NO_x/year, and 3.09E7 lbm SO_x/year.

References

ASHRAE Handbook of Fundamentals 2009

Trane TRACE 700

Bard, Rao and Athanas Consulting Engineers, LLC, Design Documents

Ellenzweig Architecture, Drawings and Specifications

Previous Senior Thesis Reports 2009-2010

Torcellini, M. D. (June 2007). Source Energy and Emission Factors for Energy Use in Buildigns. Golden, Colorado: National Renewable Energy Laboratory.

Appendix A: List of Tables and Figures

List of Tables

Table-1 AHUs for Blocks	5
Table-2 Weather Data	6
Table-3 Design Criteria	6
Table-4 Construction	6
Table-5 Glass Type	7
Table-6 Height	7
Table-7 Design Equipment and Lighting Loads	7
Table-8 Adjusted Equipment and Lighting Loads for Block Load Model	7
Table-9 Outside Air Ventilation Rate	8
Table-10 Heating Load Comparison	9
Table-11 Cooling Load Comparison	9
Table-12 Ventilation Rate Comparison	10
Table-13 Ventilation Rate per Area Comparison	10
Table-14 Cooling Coil Air Side Temperature Comparison	10
Table-15 Electric Rate for Time-of-Use (G-3) Building	13
Table-16 Equipment Operation, Lighting, and Occupancy Schedule	14
Table-17 Equipment Characteristics	14
Table-18 Energy Consumption Breakdown	15
Table-19 Energy Cost Breakdown	17
Table-20 Emission for Delivered Electricity	19

Table-21 Precombustion Emission for Natural Gas Delivered to Building and	
Emission for On-Site Combustion in a Commercial Boiler	20
Table-22 Total Emission for Building	20
	20

List of Figure

Figure-1 Revit Model for EMD Serono – Existing Lab Building	4
Figure-2 Building Block Division	5
Figure-3 Annual Energy Consumption	11
Figure -4 Annual Water Consumption	12
Figure-5 Annual Utility Cost	12
Figure-6 Annual Utility Cost per Area	13
Figure-7 Building Energy Breakdown	16
Figure-8 HVAC Energy Consumption	16
Figure-9 HVAC Energy Consumption	17
Figure-10Annual Energy Cost Breakdown	18
Figure-9 North American Electric Grid Connections, Including the 10 NERC Regional Reliability Councils (NERC 2007)	19

Appendix B

Supplemental Tables

	National	Eastern	Western	ERCOT	Alaska	Hawaii
T&D Losses	9.9%	9.6%	8.4%	16.1%	12.9 %	8.9 %
Fossil Fuel Energy *	2.500	2.528	2.074	3.168	3.368	3.611
Nonrenewable Energy **	3.188	3.321	2.415	3.630	3.386	3.653
Renewable Energy ***	0.177	0.122	0.480	0.029	0.264	0.368
Total Energy	3.365	3.443	2.894	3.658	3.650	4.022

Table 2 Source Energy Factors for Delivered Electricity for 2004 (kWh of source energy per kWh of delivered electricity)

* Fossil Fuel Energy includes all coal, natural gas, petroleum fuels, and other fossil fuel

** Nonrenewable Energy includes Fossil Fuel Energy and nuclear

T2

*** Renewable Energy includes hydro, renewable fuels, geothermal, wind, and solar PV

Table 3 Total Emission Factors for Delivered Electricity (Ib of pollutant per kWh of electricity)

Pollutant (lb)	National	Eastern	Western	ERCOT	Alaska	Hawaii
CO _{2e}	1.67E+00	1.74E+00	1.31E+00	1.84E+00	1.71E+00	1.91E+00
CO ₂	1.57E+00	1.64E+00	1.22E+00	1.71E+00	1.55E+00	1.83E+00
CH ₄	3.71E-03	3.59E-03	3.51E-03	5.30E-03	6.28E-03	2.96E-03
N ₂ O	3.73E-05	3.87E-05	2.97E-05	4.02E-05	3.05E-05	2.00E-05
NO _X	2.76E-03	3.00E-03	1.95E-03	2.20E-03	1.95E-03	4.32E-03
SO _X	8.36E-03	8.57E-03	6.82E-03	9.70E-03	1.12E-02	8.36E-03
CO	8.05E-04	8.54E-04	5.46E-04	9.07E-04	2.05E-03	7.43E-03
TNMOC	7.13E-05	7.26E-05	6.45E-05	7.44E-05	8.40E-05	1.15E-04
Lead	1.31E-07	1.39E-07	8.95E-08	1.42E-07	6.30E-08	1.32E-07
Mercury	3.05E-08	3.36E-08	1.86E-08	2.79E-08	3.80E-08	1.72E-07
PM10	9.16E-05	9.26E-05	6.99E-05	1.30E-04	1.09E-04	1.79E-04
Solid Waste	1.90E-01	2.05E-01	1.39E-01	1.66E-01	7.89E-02	7.44E-02

Pollutant	Anthracite Coal	Bituminous Coal	Lignite Coal	Natural Gas	Residual Fuel Oil	Distillate Fuel Oil	Gasoline	LPG	Kerosene
(lb)	1000 lb	1000 lb	1000 lb	1000 ft ³ *	1000 gal	1000 gal	1000 gal	1000 gal	1000 gal
CO _{2e}	9.76E+1	1.89E+2	1.37E+2	2.78E+1	4.47E+3	4.10E+3	3.50E+3	2.56E+3	3.83E+3
CO ₂	5.85E+1	9.32E+1	1.07E+2	1.16E+1	3.57E+3	3.28E+3	2.80E+3	2.05E+3	3.06E+3
CH ₄	1.69E+0	4.15E+0	1.30E+0	7.04E-1	3.81E+1	3.49E+1	2.98E+1	2.18E+1	3.26E+1
N ₂ O	1.08E-3	1.80E-3	1.45E-3	2.35E-4	6.57E-2	6.03E-2	5.14E-2	3.77E-2	5.63E-2
NOx	2.51E-1	7.69E-1	3.33E-1	1.64E-2	2.73E+1	2.50E+1	2.13E+1	1.57E+1	2.34E+1
SOx	2.02E-1	3.34E-1	4.52E-1	1.22E+0	3.86E+1	3.55E+1	3.02E+1	2.22E+1	3.31E+1
CO	2.40E-1	4.30E-1	4.73E-1	1.36E-2	1.15E+2	1.06E+2	9.00E+1	6.61E+1	9.86E+1
TNMOC	3.74E-4	7.36E-4	8.55E-4	4.56E-5	2.31E-2	2.12E-2	1.81E-2	1.33E-2	1.98E-2
Lead	3.44E-6	5.21E-6	3.13E-5	2.41E-7	1.47E-4	1.35E-4	1.15E-4	8.43E-5	1.26E-4
Mercury	7.45E-7	1.29E-6	1.20E-6	5.51E-8	2.42E-5	2.22E-5	1.89E-5	1.39E-5	2.07E-5
PM10	6.04E-3	2.10E-2	1.01E-2	8.17E-4	6.99E-1	6.42E-1	5.47E-1	4.01E-1	5.99E-1
PM-									
unspecified	2.11E+0	1.65E+0	1.31E-1	1.42E-3	2.71E+0	2.49E+0	2.12E+0	1.56E+0	2.32E+0
Solid Waste	2.74E+2	2.40E+2	5.77E+0	1.60E+0	4.21E+2	3.87E+2	3.30E+2	2.42E+2	3.61E+2

 Table 6 Precombustion Emission Factors for Fuel Delivered to Buildings (Ib of pollutant per unit of fuel)

* Gas volume at 60°F and 14.70 psia.

Table 8 Emission Factors for On-Site Combustion in a Commercial Boiler
(Ib of pollutant per unit of fuel)

	Commercial Boiler								
Pollutant (lb)	Bituminous Coal *	Lignite Coal **	Natural Gas	Residual Fuel Oil	Distillate Fuel Oil	LPG			
	1000 lb	1000 lb	1000 ft ³ ***	1000 gal	1000 gal	1000 gal			
CO _{2e}	2.74E+03	2.30E+03	1.23E+02	2.56E+04	2.28E+04	1.35E+04			
CO ₂	2.63E+03	2.30E+03	1.22E+02	2.55E+04	2.28E+04	1.32E+04			
CH ₄	1.15E-01	2.00E-02	2.50E-03	2.31E-01	2.32E-01	2.17E-01			
N ₂ O	3.68E-01	ND [†]	2.50E-03	1.18E-01	1.19E-01	9.77E-01			
NO _X	5.75E+00	5.97E+00	1.11E-01	6.41E+00	2.15E+01	1.57E+01			
SOx	1.66E+00	1.29E+01	6.32E-04	4.00E+01	3.41E+01	0.00E+00			
CO	2.89E+00	4.05E-03	9.33E-02	5.34E+00	5.41E+00	2.17E+00			
VOC	ND [†]	ND [†]	6.13E-03	3.63E-01	2.17E-01	3.80E-01			
Lead	1.79E-03	6.86E-02	5.00E-07	1.51E-06	ND [†]	ND [†]			
Mercury	6.54E-04	6.54E-04	2.60E-07	1.13E-07	ND [†]	ND [†]			
PM10	2.00E+00	ND^{\dagger}	8.40E-03	4.64E+00	1.88E+00	4.89E-01			

* from the U.S. LCI data module: Bituminous Coal Combustion in an Industrial Boiler (NREL 2005)

** from the U.S. LCI data module: Lignite Coal Combustion in an Industrial Boiler (NREL 2005)

*** Gas volume at 60°F and 14.70 psia.

[†] no data available

Sample of Internal Load

Internal Load Templates - Project 🛛 🔀							
Alternative	Altern	ative 1	•				Apply
Description	Resea	arch and Development	•				Close
People							
Туре	Laborato	уу				•	New
Density	33.3	sq ft/person 💌	Schedule 🛛	Cooling Onl	y (Design)	-	Сору
Sensible	250	Btu/h	Latent 2	:50 Bt	ı∕h		Delete
Workstations.							Add Global
Density	1	workstation/person 💌					
, Lighting		,					
Туре	Recesse	ed fluorescent, not vented, 80	1% load to spac	e:		-	
Heat gain	2	W/sq.ft	Schedule 0	Cooling Onl	y (Design)	-	
Miscellaneous	s loads						
Туре	Std Offic	e Equipment				-	
Energy	10	W/sq.ft	Schedule C	Cooling Onl	y (Design)	-	
Energy meter	Electricit	y 💌					
		1:0					-
<u>I</u> nternal L	oad	Airflow	<u>T</u> hermos	tat	<u>C</u> onstruction		<u>R</u> oom

Sample of Airflow

Airflow Temp	lates - Project				
Alternative	Alternative 1	•			Apply
Description	Vivarium	•			Close
Main supply		Auxiliary supply			
Cooling	To be calculated 💌	Cooling	To be calculated 💌		New
Heating	To be calculated 💌	Heating	To be calculated 💌		Сору
Ventilation		Std 62.1-2004/2007			Delete
Apply ASHR	AE Std62.1-2004/2007 No 💌	Clg Ez Ceiling clg :	supply, ceiling retu 💌 📃	%	Add Global
Туре	100 Percent Outdoor Air	Htg Ez Ceiling supp	oly > trm+15°F(8°C 💌	%	
Cooling	8 air changes/hr 💌	Er Default bas	ed on system type 💌	%	
Heating	8 air changes/hr 💌	DCV Min OA Intake	None	~	
Schedule	Available (100%)	Room exhaust			
Infiltration		Rate 2	air changes/hr 💽		
Туре	Pressurized, Average Const. 💌	Schedule Available	e (100%) 🔹 💌		
Cooling	0.3 air changes/hr 💌	VAV minimum			
Heating	0.3 air changes/hr 💌	Rate 20	cfm/person 💌		
Schedule	Available (100%)	Schedule Available	e (100%) 🔹		
		Type Default	•		
Internal Lo	ad <u>A</u> irflow	<u>T</u> hermostat	<u>C</u> onstruction		<u>R</u> oom

Sample of Thermostat

Thermostat Templat	es - Project			X
Alternative Alternat	ive 1	•		Apply
Description Lunch		•		Close
Thermostat settings				
Cooling dry bulb	75 °F			New
Heating dry bulb	72 °F			Сору
Relative humidity	50 %			Delete
Cooling driftpoint	77 °F			Add Global
Heating driftpoint	70 °F			
Cooling schedule	Cstat		•	
Heating schedule	Hstat		•	
Sensor Locations				
Thermostat	Zone		•	
CO2 sensor	Room		•	
Humidity				
Moisture capacitance	Medium		•	
Humidistat location	Room		•	
Internal Load	<u>A</u> irflow	<u>T</u> hermostat	<u>Construction</u>	<u>R</u> oom

Sample of Construction

Construction Templates - Pro	ject			\sim
Alternative Alternative 1	•			Apply
Description EMD	•			Close
Construction		U-factor Btu/h-ft ^{e,} *F		New
Slab 6" HW Concrete		0.534759		
Roof Steel Sheet, 3.33" Ins		0.0803218		Сору
				Delete
Wall Face Brick, 4" LW Co		0.0435207		Add Global
Partition 0.75" Gyp Frame	-	0.387955		
Glass type		U-factor Btu/h-ft ^{e, •} F	Shading coeff	
Window Double Clear 1/4"	•	0.6	0.82	
Skylight Double Clear 1/4''	-	0.6	0.82	
Door Standard Door	•	0.2	0	
Height	Pct wall area to			
Wall 11.3 ft	underfloor plenum		%	
Fir to fir 14 ft	Room type	Conditioned	-	
Plenum 2.7 ft				
Internal Load <u>A</u> i	flow <u>I</u> herm	ostat	<u>Construction</u>	<u>R</u> oom

Sample of Schematic

Create Systems - Selection		
Alternative 1 System description AHU-1	▼ Variable Volume Reheat (30% Min Flow Default)	Apply Close
System category		
All Variable Volume Constant Volume - Non-mixing Constant Volume - Mixing Heating Only Induction Underfloor Air Distribution Displacement Ventilation Chilled Beams		<u>N</u> ew C <u>o</u> py Delete
J System type Double Duct VAV		Advanced
Parallel Fan Powered VAV, Htg Coil on Mixing Box Outlet Parallel Fan-Powered VAV Parallel Fan-Powered VAV, Htg Coil on Plenum Inlet Series Fan-Powered VAV		J
Two-Fan Double Duct VAV Two-Fan Double Duct VAV Variable Refrigerant Volume Variable Volume Reheat (30% Min Flow Default)	=	
VAV w/Baseboard Heating VAV w/Baseboard Skin Heating VAV w/Forced Flow Skin Heating	~	
Selection Options Dedicated OA	Iemp/Humidity <u>F</u> ans <u>C</u> oils	Sc <u>h</u> ematic

Sample of Cooling Equipment

芦 Create Plants							
Cooling Equipment - Alternative 1				Heat Rejection			
Cooling plant	Cooling plant - 001		•	Туре	Cooling tower for Cent. Chille	ers 💌	Apply
Equipment tag	Water-cooled chiller - 001		•	Hourly ar	mbient wet bulb offset	۴F	<u>C</u> lose
Category	Water-cooled chiller		•				
Equipment type	Centrifugal 3-Stg w/ 12F Evap Delta T 💌		elta T 💌	Thermal Storage			New Equip
Sequencing type	Single 🔻		•	Туре	None	•	Copy Equip
Energy source			-	Capacity	0 ton-hr	~	
Reject condenser heat	t Heat rejection equipment		•	Schedule	• Storage	~	<u>D</u> elete Equip
Reject heat to plant	, 		_		,		
	,						Controls
Operating mo	de		Capacity		Energy rate		Packaged
Cooling		350	tons		0.56 kW/ton		Energy Breakout
Heat recovery			tons		kW/ton		DIGGNOUL
Tank charging		tons			kW/ton		
Tank charging & heat recovery tons		tons		kW/ton			
Pumps		Туре		Full load consumption			
Primary chilled water		CV Evap Wtr Pump (12 F Delta T)			0 ft water		
		Cnst vol cnd wate	r pump - Low Eff		0 ft water		
Heat recovery or aux condenser None				0 ft water			
Configuration		Coo <u>l</u> ing Equ	uipment		Heating Equipment	<u>B</u> ase Utility /	Misc. Accessory

EMD SERONO RESEARCH CENTER – EXISITING | BILLERICA | MA 28

Sample for Heating Equipment

💭 Create Plants							_ 🗆 🖂
Heating Equipment Heating plant Equipment tag Category Equipment type Capacity	Heating plant - 0 Boiler - 001 Boiler Gas Fired Steam	n Boiler	•	Thermal Sto Type Capacity Schedule Controls Equipment schedule Demand lii	None ton-hr Storage	V V V	Apply Close New Equip Copy Equip Delete Equip
Hot Water Pump Type Full load consumption	Heating water ci						
Configuration Cooling Equipment		<u>H</u> eat	ing Equipment	<u>B</u> ase Utility / M	lisc. Accessory		